Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(4): e18113, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332530

RESUMEN

The resistance to anoikis plays a critical role in the metastatic progression of various types of malignancies, including gastric cancer (GC). Nevertheless, the precise mechanism behind anoikis resistance is not fully understood. Here, our primary focus was to examine the function and underlying molecular mechanism of Integrin beta-like 1 (ITGBL1) in the modulation of anoikis resistance and metastasis in GC. The findings of our investigation have demonstrated that the overexpression of ITGBL1 significantly augmented the resistance of GC cells to anoikis and promoted their metastatic potential, while knockdown of ITGBL1 had a suppressive effect on both cellular processes in vitro and in vivo. Mechanistically, we proved that ITGBL1 has a role in enhancing the resistance of GC cells to anoikis and promoting metastasis through the AKT/Fibulin-2 (FBLN2) axis. The inhibition of AKT/FBLN2 signalling was able to reverse the impact of ITGBL1 on the resistance of GC cells to anoikis and their metastatic capability. Moreover, the expression levels of ITGBL1 were found to be significantly elevated in the cancerous tissues of patients diagnosed with GC, and there was a strong correlation observed between high expression levels of ITGBL1 and worse prognosis among individuals diagnosed with GC. Significantly, it was revealed that within our cohort of GC patients, individuals exhibiting elevated ITGBL1 expression and diminished FBLN2 expression experienced the worst prognosis. In conclusion, the findings of our study indicate that ITGBL1 may serve as a possible modulator of resistance to anoikis and the metastatic process in GC.


Asunto(s)
Anoicis , Proteínas de Unión al Calcio , Neoplasias Gástricas , Humanos , Anoicis/genética , Neoplasias Gástricas/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de la Matriz Extracelular , Línea Celular Tumoral , Metástasis de la Neoplasia , Integrina beta1/genética
2.
Cancer Lett ; 585: 216693, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38301909

RESUMEN

Necroptosis is a regulated necrotic cell death mechanism and plays a crucial role in the progression of cancers. However, the potential role and mechanism of necroptosis in colorectal cancer (CRC) has not been fully elucidated. In this study, we found that nuclear receptor subfamily 4 group A member 1 (NR4A1) was highly expressed in CRC cells treated with TNF-α, Smac mimetic, and z-VAD-FMK (TSZ). The depletion of NR4A1 significantly enhanced the sensitivity of CRC cells to TSZ-induced necroptosis, while NR4A1 overexpression suppressed these effects, as evidenced by the LDH assay, flow cytometry analysis of cell death, PI staining, and expression analysis of necrosome complexes (RIPK1, RIPK3, and MLKL). Moreover, NR4A1 deficiency made HT29 xenograft tumors sensitive to necroptotic cell death in vivo. Mechanistically, NR4A1 depletion promoted necroptosis activation in CRC through the RIG-I-like receptor pathway by interacting with DDX3. Importantly, the RIG-I pathway agonist poly(I:C) or inhibitor cFP abolished the effects of NR4A1 overexpression or suppression on necroptosis in CRC cells. Moreover, we observed that NR4A1 was highly expressed in CRC tissues and was associated with a poor prognosis. In conclusion, our results suggest that NR4A1 plays a critical role in modulating necroptosis in CRC cells and provide a new therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas Quinasas , Humanos , Proteínas Quinasas/metabolismo , Necroptosis/fisiología , Muerte Celular , Necrosis , Neoplasias Colorrectales/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Apoptosis , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
3.
Chin Med J (Engl) ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420780

RESUMEN

ABSTRACT: Gallbladder polypoid lesions (GPLs) refer to any elevated lesion of the mucosal surface of the gallbladder wall, and the prevalence is estimated to be between 0.9% and 12.1%. GPLs include benign polyps and malignant polyps. Benign polyps are further classified as non-neoplastic polyps and neoplastic polyps. Cholesterol polyps are the most common benign polyps and adenocarcinoma is the main type of malignant polyp. Hepatitis B virus infection, liver function abnormalities, dyslipidemia, and obesity are the main risk factors for GPLs. Studies of biological mechanisms have focused on malignant gallbladder polyps, the development of which is regulated by hormone levels in vivo , gut microbiota, inflammation, oxidative stress, Salmonella typhimurium , and related molecules. Diagnostic modalities include chemical examination and imaging examination, with imaging examination currently being the mainstay. Treatment of patients with GPLs is based on the presence or absence of symptoms, age, size of the polyps, tendency of the polyp to increase, and risk factors for symptomatic malignancy to determine whether surgery should be performed.

4.
BMC Gastroenterol ; 24(1): 7, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166603

RESUMEN

Gallbladder polyps are a common biliary tract disease whose treatment options have yet to be fully established. The indication of "polyps ≥ 10 mm in diameter" for cholecystectomy increases the possibility of gallbladder excision due to benign polyps. Compared to enumeration of risk factors in clinical guidelines, predictive models based on statistical methods and artificial intelligence provide a more intuitive representation of the malignancy degree of gallbladder polyps. Minimally invasive gallbladder-preserving polypectomy procedures, as a combination of checking and therapeutic approaches that allow for eradication of lesions and preservation of a functional gallbladder at the same time, have been shown to maximize the benefits to patients with benign polyps. Despite the reported good outcomes of predictive models and gallbladder-preserving polypectomy procedures, the studies were associated with various limitations, including small sample sizes, insufficient data types, and unknown long-term efficacy, thereby enhancing the need for multicenter and large-scale clinical studies. In conclusion, the emergence of predictive models and minimally invasive gallbladder-preserving polypectomy procedures has signaled an ever increasing attention to the role of the gallbladder and clinical management of gallbladder polyps.


Asunto(s)
Enfermedades de la Vesícula Biliar , Neoplasias de la Vesícula Biliar , Pólipos , Humanos , Neoplasias de la Vesícula Biliar/cirugía , Neoplasias de la Vesícula Biliar/patología , Inteligencia Artificial , Enfermedades de la Vesícula Biliar/cirugía , Colecistectomía , Pólipos/cirugía , Pólipos/patología , Estudios Retrospectivos , Estudios Multicéntricos como Asunto
5.
Cell Death Discov ; 10(1): 33, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228617

RESUMEN

HOOK3, a member of the human hook microtubule-tethering protein family, has been implicated in the progression of cancer. However, the role of HOOK3 in the pathogenesis of gastric cancer (GC) remains incompletely understood. In this study, we investigated the expression of HOOK3 protein in GC tissues using immunohistochemistry (IHC). The findings of our study indicate that the expression levels of HOOK3 in GC tissues were relatively low. Furthermore, a significant negative association was seen between HOOK3 expression and the prognosis of patients with GC. The suppression of HOOK3 resulted in a notable increase in the proliferation, migration, invasion, and survival of GC cells. Conversely, the overexpression of HOOK3 had the opposite impact, reducing these cellular processes. Moreover, in vivo tests have shown evidence that the overexpression of HOOK3 significantly inhibited the formation of tumors and the spread of GC cells to the lungs. In a mechanistic manner, the analysis of RNA-seq data demonstrated that the knockdown of HOOK3 resulted in a notable increase in the expression of vascular endothelial growth factor A (VEGFA) in GC cells. Furthermore, the upregulation of VEGFA counteracted the impacts of HOOK3 upregulation on the proliferation, migration, invasion, and survival of GC cells. Furthermore, it was revealed that specificity protein 1 (SP1) exhibited the ability to bind to the promoter region of VEGFA. Moreover, the overexpression of SP1 successfully counteracted the inhibitory impact of HOOK3 overexpression on the expression of VEGFA in GC cells. In summary, the results of our study indicate that HOOK3 has a role in inhibiting the growth, migration, invasion, and survival of GC cells by modulating the SP1/VEGFA pathway. These findings contribute significant knowledge to our understanding of the underlying mechanisms involved in the development of GC.

6.
Cell Death Discov ; 9(1): 411, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957183

RESUMEN

Aerobic glycolysis has been shown to play a key role in tumor cell proliferation and metastasis. However, how it is directly regulated is largely unknown. Here, we found that HES1 expression was significantly higher in CRC tissues than that in adjacent normal tissues. Moreover, high HES1 expression is associated with poor survival in CRC patients. HES1 knockdown markedly inhibited cell growth and metastasis both in vitro and in vivo. Additionally, silencing of HES1 suppressed aerobic glycolysis of CRC cells. Mechanistic studies revealed that HES1 knockdown decreased the expression of GLUT1, a key gene of aerobic glycolysis, in CRC cells. GLUT1 overexpression abolished the effects of HES1 knockdown on cell aerobic glycolysis, proliferation, migration and invasion. ChIP-PCR and dual-luciferase reporter gene assay showed that HES1 directly bound the promoter of IGF2BP2 and promoted IGF2BP2 expression. Furthermore, our data indicated that IGF2BP2 recognized and bound the m6A site in the GLUT1 mRNA and enhanced its stability. Taken together, our findings suggest that HES1 has a significant promotion effect on CRC aerobic glycolysis and progression by enhancing the stability of m6A-modified GLUT1 mRNA in an IGF2BP2-dependent manner, which may become a viable therapeutic target for the treatment of CRC in humans. The mechanism of HES1 regulating glycolysis in CRC.

7.
Oncogene ; 42(49): 3619-3632, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864033

RESUMEN

The tripartite motif (TRIM) protein family has been investigated in multiple human cancers, including gastric cancer (GC). However, the role of TRIM69 in the anoikis resistance and metastasis of GC cells remains to be elucidated. We identified the differentially expressed genes in anoikis-resistant GC cells using RNA-sequencing analysis. The interaction between TRIM69 and PRKCD was analyzed by coimmunoprecipitation and mass spectrometry. Our results have shown that TRIM69 was significantly downregulated in anoikis-resistant GC cells. TRIM69 overexpression markedly suppressed the anoikis resistance and metastasis of GC cells in vitro and in vivo. TRIM69 knockdown had the opposite effects. Mechanistically, TRIM69 interacted with PRKCD through its B-box domain and catalyzed the K48-linked polyubiquitination of PRKCD. Moreover, TRIM69 inhibited BDNF production in a PRKCD-dependent manner. Importantly, overexpression of PRKCD or BDNF blocked the effects of TRIM69 on the anoikis resistance and metastasis of GC cells. Interestingly, a TRIM69-PRKCD+BDNF+ cell subset was positively associated with metastasis in GC patients. TRIM69-mediated suppression of the anoikis resistance and metastasis of GC cells via modulation of the PRKCD/BDNF axis, with potential implications for novel therapeutic approaches for metastatic GC.


Asunto(s)
Anoicis , Neoplasias Gástricas , Proteínas de Motivos Tripartitos , Humanos , Factor Neurotrófico Derivado del Encéfalo , Línea Celular Tumoral , Metástasis de la Neoplasia , Complejo de la Endopetidasa Proteasomal/genética , Proteína Quinasa C-delta , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligasas/genética
8.
Front Endocrinol (Lausanne) ; 14: 1224832, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37608794

RESUMEN

Background: Gastric cancer continues to be a significant global healthcare challenge, and its burden remains substantial. The development of gastric cancer (GC) is closely linked to chronic atrophic gastritis (CAG), yet there is a scarcity of research exploring the underlying mechanisms of CAG-induced carcinogenesis. Methods: In this study, we conducted a comprehensive investigation into the oncogenes involved in CAG using both bulk transcriptome and single-cell transcriptome data. Our approach employed hdWGCNA to identify pathogenic genes specific to CAG, with non-atrophic gastritis (NAG) serving as the control group. Additionally, we compared CAG with GC, using normal gastric tissue as the control group in the single-cell transcriptome analysis. By intersecting the identified pathogenic genes, we pinpointed key network molecules through protein interaction network analysis. To further refine the gene selection, we applied LASSO, SVM-RFE, and RF techniques, which resulted in a set of cancer-related genes (CRGs) associated with CAG. To identify CRGs potentially linked to gastric cancer progression, we performed a univariate COX regression analysis on the gene set. Subsequently, we explored the relationship between CRGs and immune infiltration, drug sensitivity, and clinical characteristics in gastric cancer patients. We employed GSVA to investigate how CRGs regulated signaling pathways in gastric cancer cells, while an analysis of cell communication shed light on the impact of CRGs on signal transmission within the gastric cancer tumor microenvironment. Lastly, we analyzed changes in metabolic pathways throughout the progression of gastric cancer. Results: Using hdWGCNA, we have identified a total of 143 pathogenic genes that were shared by CAG and GC. To further investigate the underlying mechanisms, we conducted protein interaction network analysis and employed machine learning screening techniques. As a result, we have identified 15 oncogenes that are specifically associated with chronic atrophic gastritis. By performing ROC reanalysis and prognostic analysis, we have determined that GADD45B is the most significant gene involved in the carcinogenesis of CAG. Immunohistochemical staining and differential analysis have revealed that GADD45B expression was low in GC tissues while high in normal gastric tissues. Moreover, based on prognostic analysis, high expression of GADD45B has been correlated with poor prognosis in GC patients. Additionally, an analysis of immune infiltration has shown a relationship between GADD45B and the infiltration of various immune cells. By correlating GADD45B with clinical characteristics, we have found that it primarily affects the depth of invasion in GC. Through cell communication analysis, we have discovered that the CD99 signaling pathway network and the CDH signaling pathway network are the main communication pathways that significantly alter the microenvironment of gastric tissue during the development of chronic atrophic gastritis. Specifically, GADD45B-low GC cells were predominantly involved in the network communication of the CDH signaling pathway, while GADD45B-high GC cells played a crucial role in both signaling pathways. Furthermore, we have identified several metabolic pathways, including D-Glutamine and D-glutamate metabolism and N-Glycan biosynthesis, among others, that played important roles in the occurrence and progression of GC, in addition to the six other metabolic pathways. In summary, our study highlighted the discovery of 143 pathogenic genes shared by CAG and GC, with a specific focus on 15 oncogenes associated with CAG. We have identified GADD45B as the most important gene in the carcinogenesis of CAG, which exhibited differential expression in GC tissues compared to normal gastric tissues. Moreover, GADD45B expression was correlated with patient prognosis and is associated with immune cell infiltration. Our findings also emphasized the impact of the CD99 and CDH signaling pathway networks on the microenvironment of gastric tissue during the development of CAG. Additionally, we have identified key metabolic pathways involved in GC progression. Conclusion: GADD45B, an oncogene implicated in chronic atrophic gastritis, played a critical role in GC development. Decreased expression of GADD45B was associated with the onset of GC. Moreover, GADD45B expression levels were closely tied to poor prognosis in GC patients, influencing the infiltration patterns of various cells within the tumor microenvironment, as well as impacting the metabolic pathways involved in GC progression.


Asunto(s)
Gastritis , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Oncogenes , Carcinogénesis/genética , Mapas de Interacción de Proteínas , Microambiente Tumoral , Antígenos de Diferenciación
9.
Chin Med J (Engl) ; 136(16): 1977-1989, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37488673

RESUMEN

BACKGROUND: Cancer stem-like cells (CSCs) are a small subset of cells in tumors that exhibit self-renewal and differentiation properties. CSCs play a vital role in tumor formation, progression, relapse, and therapeutic resistance. B7-H3, an immunoregulatory protein, has many protumor functions. However, little is known about the mechanism underlying the role of B7-H3 in regulating gastric cancer (GC) stemness. Our study aimed to explore the impacts of B7-H3 on GC stemness and its underlying mechanism. METHODS: GC stemness influenced by B7-H3 was detected both in vitro and in vivo . The expression of stemness-related markers was examined by reverse transcription quantitative polymerase chain reaction, Western blotting, and flow cytometry. Sphere formation assay was used to detect the sphere-forming ability. The underlying regulatory mechanism of B7-H3 on the stemness of GC was investigated by mass spectrometry and subsequent validation experiments. The signaling pathway (Protein kinase B [Akt]/Nuclear factor erythroid 2-related factor 2 [Nrf2] pathway) of B7-H3 on the regulation of glutathione (GSH) metabolism was examined by Western blotting assay. Multi-color immunohistochemistry (mIHC) was used to detect the expression of B7-H3, cluster of differentiation 44 (CD44), and Nrf2 on human GC tissues. Student's t -test was used to compare the difference between two groups. Pearson correlation analysis was used to analyze the relationship between two molecules. The Kaplan-Meier method was used for survival analysis. RESULTS: B7-H3 knockdown suppressed the stemness of GC cells both in vitro and in vivo . Mass spectrometric analysis showed the downregulation of GSH metabolism in short hairpin B7-H3 GC cells, which was further confirmed by the experimental results. Meanwhile, stemness characteristics in B7-H3 overexpressing cells were suppressed after the inhibition of GSH metabolism. Furthermore, Western blotting suggested that B7-H3-induced activation of GSH metabolism occurred through the AKT/Nrf2 pathway, and inhibition of AKT signaling pathway could suppress not only GSH metabolism but also GC stemness. mIHC showed that B7-H3 was highly expressed in GC tissues and was positively correlated with the expression of CD44 and Nrf2. Importantly, GC patients with high expression of B7-H3, CD44, and Nrf2 had worse prognosis ( P = 0.02). CONCLUSIONS: B7-H3 has a regulatory effect on GC stemness and the regulatory effect is achieved through the AKT/Nrf2/GSH pathway. Inhibiting B7-H3 expression may be a new therapeutic strategy against GC.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...